Molecular Vibration Analysis of the Cage-Like Molecules β -P₄S₅, As₄S₅, P₄S₇, and As₂P₂S₇

S. J. Cyvin and B. N. Cyvin

Institutt for Teoretisk Kjemi, Norges Tekniske Høgskole, Universitetet i Trondheim, Norway

H. Motz and C. Wibbelmann*

Institut für Anorganische Chemie, Technische Universität Clausthal, Clausthal-Zellerfeld, Federal Republic of Germany

Z. Naturforsch. 38a, 987-994 (1983); received May 24, 1983

The cage-like molecules β -P₄S₅, As₄S₅, P₄S₇ and As₂P₂S₇ are all supposed to have C_{2v}-symmetry. A normal coordinate analysis was performed for those molecules, based on a very simple initial force field with three numerical parameters and valence coordinates including redundancies. A complete set of symmetry coordinates is given. The force field was refined by adjusting the symmetry force constants to fit exactly a set of observed frequencies. This was used to calculate the mean amplitudes of vibration and perpendicular amplitude correction coefficients. The standard thermodynamical values derived from spectroscopic data are also given. A set of frequencies was calculated for the so far unknown compound P₄S₆.

Introduction

The cage-like structures of the binary phosphorous- and arsenic-sulfides are quite unusual. The substitution of As for P will yield a variety of new, sometimes isomeric compounds. Our studies of P-S-, As-S- and As-P-S-compounds [1-9] shall now be continued under the aspect of comparable structure elements. The available information on As-P-S-compounds is still very limited [4, 8, 10]. In special cases the replacement of P by As can be regarded as a quasi isotopic substitution which will become evident in the vibrational spectra. This assumption can be used during the assignment of frequencies. The recent spectroscopical investigations [6, 7, 9] are now supplemented by a normal coordinate analysis. The validity of a highly approximate force field is tested by an application to related molecules, viz. β -P₄S₅, As₄S₅, P₄S₇ and As₂P₂S₇. In all cases the vibrational frequencies are calculated with satisfactory results, sometimes leading to a slight reassignment of the reported frequencies [6, 9]. For As₂P₂S₇ these data were used as a set of reference for completing the assignment.

Reprint requests to Prof. S. J. Cyvin, Division of Physical Chemistry, The University of Trondheim, N-7034 Trondheim-NTH, Norway.

 β -P₄S₅ has been characterized by x-ray diffraction [11] and vibrational spectroscopy [6, 8]. As₄S₅ is occasionally found after slow evaporation of CS₂ from As₄S₄-CS₂-solutions in form of yellow needles. Crystal data have been given [12] and recently also Raman frequencies were obtained [9]. P₄S₇ is one of the thermally stable phosphorous sulfides. Its crystal structure [13, 14] and vibrational spectra [6, 8, 15] are known. As₂P₂S₇ was recently investigated by us [7]. On the basis of vibrational spectra a model for its molecular structure was proposed. The crystal structure of this compound remains still unknown.

 P_4S_6 has not been isolated until now, but some frequencies appearing in the P_4S_7 spectra after thermal treatment have been attributed to this compound by Bues et al. [6]. Therefore it seemed useful to include a set of calculated frequencies for this compound and to compare it with experimental data [6] as well as calculated frequencies of P_4S_7 and β - P_4S_5 .

Structure Parameters

The crystals of the title compounds consist of isolated cage-like A_4S_5 - resp. A_4S_7 -molecules (A=P, As) having C_{2v} -symmetry. The bonding distances and angles listed in Table 1 have been taken from published crystal data [11–14]. In the case of $As_2P_2S_7$, they were estimated from comparison with similar compounds.

0340-4811 / 83 / 0900-0987 \$ 01.3 0/0. – Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

^{*} Present address: Institutt for Uorganisk Kjemi, Norges Tekniske Høgskole, Universitetet i Trondheim, N-7034 Trondheim-NTH, Norway.

Table 1. Molecular parameters (mean values) of the title molecules.

	β-P ₄ S ₅ [11]	As ₄ S ₅ [12]	α-P ₄ S ₇ [13, 14]	As ₂ P ₂ S ₇ *
$\begin{array}{c} A_a \! = \! S \\ A_a \! - \! S_a \\ A_a \! - \! S_a \\ A_b \! - \! S \\ A_b \! - \! S_b \\ < A_a \! - \! S_a \! - \! A_a \\ < S \! - \! A_a \! - \! S_a \\ < S_a \! - \! A_a \! - \! S_a \\ < A_a \! - \! S_a \! - \! A_b \\ < A_a \! - \! S_b \! - \! A_b \\ < S \! - \! A_b \! - \! S_b \\ < S \! - \! A_b \! - \! S_b \\ < S \! - \! A_a \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \! - \! A_b \! - \! S_a \\ < S \!$	2.13 2.12 2.12 2.29 115.5° 97.6° 107.4° 105.4° 104.6° 102.6°	2.26 2.24 2.24 2.54 117.30 98.80 104.90 101.30 100.90	1.92 2.11 2.08 2.11 2.33 110.1 ⁰ 102.8 ⁰ 109.1 ⁰ 102.4 ⁰ 103.9 ⁰ 102.7 ⁰ 107.7 ⁰ 114.0 ⁰	1.92 2.11 2.10 2.23 2.54 110.1° 103.5° - 99.4° 99.7° 107.7°
Atomic weight	s As: 74.92 P: 30.97 S: 32.06	38		

All distances in A. * estimated values.

Symmetry Coordinates

For all of the studied cage-molecules models with C_{2v} -symmetry were used, cf. Figure 1. In case of the A_4S_5 -type molecules the following distribution of the normal modes resulted:

$$\Gamma_{\text{vib}} = 7 A_1 + 4 A_2 + 5 B_1 + 5 B_2$$
.

All species but A_2 , which is not active in the IR, can be observed in Raman and IR spectra. The models for the A_4S_7 -type molecules were derived by adding two terminally bonded S-atoms $S \searrow P_a / S \searrow P_a / S$. The resulting distribution of normal modes is:

$$\Gamma_{\text{vib}} = 9A_1 + 5A_2 + 7B_1 + 6B_2$$
.

The above mentioned selection rules are valid.

A complete set of independent symmetry coordinates for the A_4S_5 model was constructed with the following result:

- (i) t stretching in A_1 .
- (ii) The appropriate combinations of d and r stretchings, α and β bendings in all the species $A_1 + A_2 + B_1 + B_2$.
- (iii) ω in species A_1 .
- (iv) s stretching in species A_1 and B_2 .
- (v) One combination of the γ bendings appropriate to the B₂ species.

The designations of the applied symbols are explained in Figure 1. For the A_4S_7 model the set of

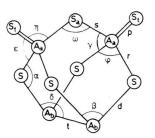


Fig. 1. Model for the A_4S_5 - and A_4S_7 -type molecules (A=As, P) with $C_{2\nu}$ symmetry. Only one of each set of valence coordinates is indicated.

symmetry coordinates was augmented with the following members:

- (vi) p stretchings in species A_1 and B_2 .
- (vii) four combinations of the ε bendings, belonging to $A_1 + A_2 + B_1 + B_2$.

All bending coordinates were scaled by factors of the dimension of length according to $(r_{ik}r_{jk})^{1/2}\Phi_{ikj}$.

Initial Force Field

An extremely simple initial force field was assumed in the same way as it was done for P_4S_3 [2–4] and related molecules [4]. A diagonal force-constant matrix was constructed in terms of valence coordinates including redundancies. The inherent coordinates are: (a) All bond stretchings, viz. the four and five types in the cases of A_4S_5 and A_4S_7 , respectively (cf. Fig. 1), (b) all interbond angle bendings of the types applied in the construction of symmetry coordinates, again four and five types in the cases of A_4S_5 and A_4S_7 , respectively (cf. Fig. 1), and finally (c) the additional bendings not occurring among the symmetry coordinates, viz. the $S-A_b-S$ and $S-A_a-S$ types, and in the case of A_4S_7 also $S_1=A_a-S_a$.

Most of the numerical values of the initial force constants are transferred from P_4S_3 and related molecules [2-4]. For the stretchings it was adopted (in mdyne/Å): $f_t(A_b-A_b)=1.1$; $f_d(A_b-S)=f_r(A_a-S)=f_s(A_a-S_a)=1.3$; in the case of A_4S_7 the value of $f_p(A_a=S_t)=3.4$ was adopted after a few trials. It appears to be substantially smaller than the corresponding value in P_4S_{10} [16]. It should be noticed that the numerical values are the same whenever the A atom is P or As. The bending force constants were all assumed to have the same value, viz. $0.2 \, \text{mdyne/Å}$.

Vibrational Assignments

Tables 2, 3 include the calculated frequencies for the four title molecules from the initial force field (see above). They were used as an aid in the assignment of observed fundamentals. The final proposed assignments are shown in the columns labled b of each of the tables.

For P_4S_5 and P_4S_7 the observed frequencies of Bues et al. [6] were used. In the former case (P_4S_5) our assignment is identical with the one proposed by the mentioned authors [6] apart from some details in species A_2 . The calculations strongly suggest the lowest frequency to appear below the range of observations in the experimental work [6]. Hence we have re-assigned the 227 cm⁻¹ Raman band from ν_{11} to ν_{10} and applied our calculated frequency (130 cm⁻¹) as ν_{11} . Also in the A_2 species of P_4S_7 we have made a slight re-assignment, but not affecting the lowest frequency ν_{14} of 123 cm⁻¹. Guided by the calculated frequencies we found it plausible to assign the Raman 214 cm⁻¹ band as ν_{12} (instead of ν_{14}). For ν_{14} we adopted the calculated

value of $186 \,\mathrm{cm^{-1}}$. This band could very well be hidden together with the very strong $188 \,\mathrm{cm^{-1}}$ frequency observed in the Raman spectrum of the solid compound and assigned to $v_8(A_1)$; the corresponding value in the melt is actually $186 \,\mathrm{cm^{-1}}$. Finally, we have made a slight re-assignment for P_4S_7 within the B_1 species, whereas the 324 and 237 cm⁻¹ bands were assigned as v_{18} and v_{19} (instead of v_{19} and v_{20}), respectively. As v_{20} we adopted the calculated value of $200 \,\mathrm{cm^{-1}}$.

The approximately calculated frequencies from this initial force field are shown in Tables 2, 3 for the four molecules in question.

Potential Energy Distribution

A critical examination has been made [3] for the PED in terms of independent symmetry coordinates of P_4S_3 as a representant of cage-like structures. The coordinate-dependance of the PED terms was pointed out in particular, and quite meaningless PED terms were shown for a certain choice of the symmetry coordinate set. Some of these difficulties

Table 2. Calculated and observed frequencies (cm⁻¹) and PED-terms for β -P₄S₅ and As₄S₅ (initial force field).

		β -P ₄ S ₅	5		As_4S_5		
Assignment		a	b	PED-Terms ^c	a	b	PED-Terms c
$\overline{A_l}$	$\begin{array}{c} v_1 \\ v_2 \end{array}$	459 435	461 434	27d + 19t + 18r 33r + 23t + 17s	375 339	385 340	40 d + 32 r 26 r + 25 α
	v ₃ v ₄ v ₅ v ₆ v ₇	346 337 280 216 184	391 350 285 254 194	43 d 37 s + 31 γ 37 r + 18 s 46 Φ + 17 γ 59 β + 19 ω	303 242 224 183 148	327 228 211 191 145	$36s + 27\omega$ $29\gamma + 20\beta + 20t$ 37t + 21r + 16d $42\Phi + 17d$ $47\beta + 17\omega$
A ₂	v ₈ v ₉ v ₁₀ v ₁₁	465 405 211 130	434 380 227 (130)	$53 d + 23r + 21 \delta$ 58r + 22 d $52 \delta + 22 \alpha + 17 \gamma$ 72γ	378 323 169 119	(378) (323) 166 120	$47r + 39d$ $44d + 30r + 26\alpha$ $63\delta + 16\gamma$ 78γ
B ₁	v ₁₂ v ₁₃ v ₁₄ v ₁₅ v ₁₆	459 435 348 249 161	477 454 421 337 188	69s + 17r 59d 56r + 27d 40α + 28Φ 44γ + 29Φ	382 371 311 184 147	(382) 368 307 180 140	83 s 59 d + 24 r 53 r + 19 α 40 Φ + 26 d 57 γ + 16 Φ
B ₂	v ₁₇ v ₁₈ v ₁₉ v ₂₀ v ₂₁	452 374 303 221 143	454 412 313 220 184	54r + 16d 63d + 16r $37\delta + 26\alpha + 18\gamma$ $42\gamma + 25\beta + 19\delta$ $54\beta + 32\gamma$	376 316 236 186 130	(376) 312 220 188 130	59 r + 20 d $64 d + 25 \alpha$ $56 \gamma + 30 \beta$ $53 \delta + 25 r$ $61 \beta + 31 \gamma$

^a Frequencies calculated from the initial force field.

^b Experimentally observed frequencies. Values in brackets were calculated (see also Vibrational Assignment).

^c PED values under 15 are not included.

Table 3. Calculated and observed frequencies (cm $^{-1}$) and PED-terms for P_4S_7 and $As_2P_2S_7$ (initial force field).

		P_4S_7			As_2P_2	S_7	
Assig	gnment	a .	ь	PED-Terms c	a	b	PED-Terms c
A_1	ν_1	672	685	76 p	671	653	76 p
•	v_2	465	480	39s + 21r	464	464	43s + 22r
	v_3	448	443	35t + 31d	362	392	57 d
	v_4	360	398	39d + 17t	320	359	37 r
	v_5	298	344	22 γ	272	269	33 γ
	v_6	263	302	42 r	226	236	46t + 22r
	v_7	214	230	$42 \Phi + 20 \alpha$	192	208	$34 \Phi + 17 d$
	v_8	173	188	$51\beta + 19\omega$	164	184	$62\beta + 20\omega$
	v_9	126	136	$53\eta + 20\varepsilon + 20s$	125	139	$52\eta + 21\varepsilon + 20s$
\mathbf{A}_2	v_{10}	471	448	56r + 15d	467	520	68 r
-	v_{11}	446	434	58 d	360	339	77 d
	v_{12}	210	214	$52 \delta + 20 \alpha + 17 \gamma$	196	(196)	$28\gamma + 28\delta + 22\alpha + 19$
	v_{13}^{12}	186	(186)	$64\varepsilon + 21r$	161	144	$42\varepsilon + 38\delta + 18r$
	v_{14}	114	123	$62\gamma + 17\varepsilon$	115	109	$60\gamma + 16\varepsilon$
B_1	v_{15}	662	667	79 p	661	667	80 p
	v_{16}	470	543	58s + 20r	471	548	58s + 21r
	v_{17}	416	505	83 d	366	(366)	64 d
	v_{18}	318	324	50r + 22s	315	315	45r + 22s
	v_{19}	236	237	$30 \eta + 29 \Phi + 18 \alpha$	232	221	$40 \eta + 22 \Phi$
	v_{20}	200	(200)	$37\dot{\varepsilon} + 16\eta$	180	(180)	$28\varepsilon + 24d$
	v_{21}	142	130	$36\gamma + 24\Phi + 19\eta$	141	139	$31\gamma + 26\Phi + 21\eta$
B_2	v_{22}	477	467	61 r	472	434	65 r
-	v_{23}	401	413	72 d	344	330	78 d
	v ₂₄	304	317	$38\delta + 29\alpha + 17\gamma$	261	232	$47\gamma + 17\alpha + 17\beta + 17$
	v_{25}^{24}	227	245	$40\gamma + 30\beta + 17\delta$	198	199	$42\delta + 16\gamma$
	v ₂₆	188	218	$49\varepsilon + 25r$	165	153	$42\varepsilon + 25r + 17\beta$
	v_{27}^{20}	120	149	$38\beta + 26\varepsilon + 22\gamma$	119	120	$46\beta + 21\varepsilon + 21\gamma$

a-c See footnotes in Table 2.

are removed by definition of PED in the presence of redundancy [17]. This theory was applied to the initial force fields of the molecules considered here. The calculated results of the PED terms are shown in Tables 2, 3. They are based on all the described valence coordinates including redundancies (cf. Figure 1).

The PED terms display an appreciable mixing between the different types of valence coordinates. This was expected because of the cage-like structure. A simple description of the normal modes as proposed for P₄S₅ and P₄S₇ by Bues et al. [6] is probably not adequate or at least highly approximate. Furthermore, we find several real discrepancies between the mentioned description [6] and the present one deduced from Table 2. In the light of the previous discussions [3, 17] it seems clear that the significance of the calculated PED terms is not so definite as to make us abandon the force field because of the mentioned discrepancies.

Refined Force Field

The initial force field (see above) was transferred to the basis of the symmetry coordinates. Subsequently the force constants were, for each of the molecules individually, adjusted to fit exactly the final assignments as given in column b of Tables 2, 3. This step was achieved by the L-matrix method, i.e. the normal coordinate transformation matrix (L of S = LQ) was maintained from the approximate calculation with the initial force field.

Mean Amplitudes of Vibration

The final force field was used to calculate the mean amplitudes of vibration (u) [18] for all the interatomic distances of the title molecules at different temperatures. The results are given in Tables 7, 8. Also included are the calculated perpendicular amplitude correction coefficients (K-values [18, 19]), which are defined in the previous paper on P_4S_3 [2].

Table 4. The most important symmetry force constants (mdyne/Å) of the F-matrix blocks of the initial force field for the compounds β -P₄S₅ and As₄S₅.

Table 5. The most important symmetry force constants (mdyne/Å) of the F-matrix blocks of the initial force field for the compounds P_4S_7 and $As_2P_2S_7$.

Species	Coordinate	Diag	onal F-Ma	trix-Ele	ements	Species	Coordinate	Diag	onal F-M	latrix-Ele	ements
		P_4S_5		As ₄ S ₅				P ₄ S ₇		$As_2P_2S_7$	
		a	b	a	b			a	b	a	ь
$\overline{A_1}$	S ₁ S ₂ S ₃ S ₄ S ₅ S ₆ S ₇	2.64 1.58 2.14 0.68 2.95 0.42 1.69	3.36 1.81 2.33 0.78 3.60 0.48 1.86	2.73 1.57 2.19 0.74 3.10 0.42 1.69	2.76 1.60 2.29 0.71 3.02 0.43 1.73	$\overline{A_1}$	S ₁ S ₂ S ₃ S ₄ S ₅ S ₆ S ₇ S ₈ S ₉	2.99 1.67 2.43 0.80 3.33 0.60 1.75 3.40	3.55 1.89 2.83 1.00 4.00 0.71 2.03 3.68	3.05 1.61 2.48 0.81 3.24 0.59 1.75 3.40	3.45 1.88 2.77 0.95 3.54 0.68 2.06 3.34
A ₂	S_1 S_2 S_3 S_4	5.52 4.21 3.54 0.78	5.45 4.07 3.69 0.77	5.70 4.29 3.49 0.83	5.72 4.28 3.49 0.84	A_2	S ₁ S ₂ S ₃ S ₄ S ₅	0.61 6.03 4.17 4.12	0.70 6.68 4.25 4.54	0.60 6.04 4.04 3.83	5.62 4.34 3.65
B ₁	S ₁ S ₂ S ₃ S ₄ S ₅	1.42 1.81 0.47 1.58 1.36	1.81 2.36 0.69 2.22 1.56	1.42 1.82 0.49 1.61 1.36	1.37 1.76 0.46 1.49 1.35	\mathbf{B}_1		0.89 0.20 1.45 2.21	0.99 0.20 1.97 2.48	0.88 0.20 1.44 2.22	0.82 0.19 1.43 2.45
B ₂	S ₁ S ₂ S ₃ S ₄ S ₅	4.94 2.34 3.04 1.58	6.29 3.14 4.19 2.17	5.32 2.52 3.24 1.69	5.07 2.42 3.08 1.65		S ₁ S ₂ S ₃ S ₄ S ₅ S ₆ S ₇	0.82 1.78 1.44 3.40 0.61	0.76 1.65 1.73 3.53 0.61	0.81 1.77 1.44 3.40 0.60	0.78 1.76 1.71 3.45 0.59
^a Initial f		0.20 Final for	0.25	0.20	0.18	B ₂	S ₁ S ₂ S ₃ S ₄ S ₅ S ₆	5.31 2.27 3.47 1.74 0.20 0.20	6.32 2.75 4.57 2.32 0.25 0.26	5.31 2.21 3.31 1.66 0.20 0.20	4.90 1.95 3.07 1.63 0.18 0.18

a, b see footnotes in Table 4.

Table 6. Calculated mean amplitudes of vibration (u in Å) and perpendicular amplitude correction coefficients (K in Å) for P_4S_5 and As_4S_5 .

Interatomic distances	Multi- β-P ₄ S ₅					As_4S_5					
	plicity	и		K	K		и				
		T=0 K	298 K	773 K	298 K	773 K	T=0 K	298 K	773 K	298 K	773 K
A_b-S A_a-S A_a-S	4	0.051	0.059	0.085	0.003	0.008	0.048	0.059	0.089	0.004	0.009
$A_a - S_a$	2	0.051	0.059	0.085	0.003	0.007	0.047	0.060	0.089	0.004	0.009
$A_a^{"}-S^{"}$	4	0.051	0.060	0.087	0.003	0.007	0.047	0.059	0.089	0.004	0.009
$A_b^a - A_b$	1	0.052	0.061	0.089	0.002	0.005	0.043	0.061	0.094	0.002	0.004
$S \dots S'(via A_a)$	2	0.059	0.077	0.117	0.003	0.008	0.064	0.089	0.137	0.004	0.009
$S \dots S$ (via A_b)	2	0.066	0.095	0.147	0.003	0.007	0.070	0.107	0.168	0.003	0.008
$S_a \dots S$	4	0.064	0.092	0.142	0.002	0.005	0.067	0.100	0.156	0.003	0.007
$A_a \dots A_b$	4	0.056	0.068	0.102	0.001	0.003	0.048	0.073	0.114	0.001	0.002
$A_a \dots A_a$	1	0.059	0.076	0.114	0.001	0.003	0.049	0.077	0.121	0.001	0.002
$A_b \dots S$	4	0.059	0.078	0.118	0.002	0.004	0.057	0.082	0.127	0.002	0.005
$A_b \dots S_a$	2	0.063	0.085	0.130	0.001	0.003	0.059	0.090	0.140	0.001	0.003
A S	4	0.065	0.093	0.143	0.001	0.003	0.063	0.102	0.160	0.001	0.003
S S (longest)	2	0.063	0.086	0.132	0.001	0.003	0.065	0.093	0.143	0.002	0.004

Table 7. Calculated mean amplitudes of vibration (u in Å) and perpendicular amplitude correction coefficients (K in Å) for P_4S_7 and $As_2P_2S_7$.

Interatomic distances	Multi- plicity	P_4S_7							$As_2P_2S_7$					
distances	pricity	и		K		и			K					
		T=0 K	298 K	773 K	298 K	773 K	T=0 K	298 K	773 K	298 K	773 K			
$A_a = S_t$	2	0.041	0.044	0.057	0.005	0.013	0.041	0.044	0.059	0.006	0.015			
$A_b^a - S$ $A_a - S_a$ $A_a - S$	4	0.050	0.058	0.084	0.004	0.009	0.047	0.060	0.089	0.004	0.010			
$A_a - S_a$	2	0.049	0.058	0.084	0.003	0.007	0.049	0.058	0.085	0.004	0.009			
$A_a - S$	4	0.050	0.059	0.086	0.003	0.008	0.050	0.060	0.088	0.004	0.009			
$A_b^a - A_b$ $S_a \dots S_t$ $S \dots S_t$ (short)	1	0.052	0.060	0.087	0.002	0.005	0.042	0.057	0.087	0.002	0.005			
$S_3 \dots S_t$	2	0.064	0.094	0.145	0.004	0.010	0.064	0.094	0.145	0.005	0.013			
$S \dots S_t$ (short)	4	0.062	0.086	0.132	0.004	0.011	0.064	0.094	0.146	0.005	0.012			
$S \dots S$ (via A_a)		0.061	0.083	0.127	0.003	0.008	0.062	0.085	0.130	0.004	0.010			
$S \dots S $ (via A_b)	2 2	0.065	0.094	0.146	0.004	0.009	0.068	0.104	0.162	0.004	0.010			
$S_a \dots S$	4	0.064	0.093	0.144	0.003	0.006	0.066	0.098	0.153	0.003	0.008			
$A_a \dots A_b$	4	0.055	0.071	0.106	0.001	0.003	0.051	0.072	0.110	0.001	0.003			
A A	1	0.054	0.071	0.107	0.001	0.003	0.055	0.073	0.110	0.001	0.003			
$A_{b} \dots S$	4	0.059	0.077	0.117	0.002	0.005	0.056	0.082	0.127	0.002	0.005			
$A_b \dots S_a$	2	0.062	0.084	0.128	0.002	0.004	0.058	0.086	0.134	0.002	0.004			
$A_b \dots S_a$ $A_b \dots S_a$ $A_a \dots S$ $A_a \dots S$ $A_a \dots S$ $A_a \dots S$	2 4	0.063	0.094	0.145	0.002	0.004	0.064	0.097	0.150	0.002	0.004			
S S (longest)	2	0.063	0.086	0.132	0.002	0.005	0.063	0.088	0.136	0.002	0.005			
$A_a \dots S_t$	2	0.061	0.089	0.137	0.002	0.004	0.062	0.089	0.138	0.002	0.005			
$A_h \dots S_t$	4	0.061	0.082	0.125	0.002	0.004	0.057	0.086	0.134	0.002	0.004			
$S \dots S_t$ (long)	4	0.070	0.111	0.173	0.001	0.003	0.071	0.116	0.182	0.002	0.004			
$S_t \dots S_t$	1	0.073	0.122	0.191	0.001	0.004	0.073	0.119	0.187	0.002	0.005			

Table 8. Calculated thermodynamical data for the A_4S_5 and A_4S_7 molecules in an ideal gas at 1 atm and temperatures up to 1000 K. Molar heat capacity C_ρ^0 , reduced enthalpy $(H^0-H_0^0)/T$, reduced Gibbs energy $-(G^0-G_0^0)/T$ and entropy S^0 . All values given in JK⁻¹ mol⁻¹.

T(K)	C_p^0		$(H^0 - H_0^0)$	T	$(G^0 - G_0^0) /$	T	\mathcal{S}^0	
	β -P ₄ S ₅	As ₄ S ₅	β -P ₄ S ₅	As ₄ S ₅	β -P ₄ S ₅	As_4S_5	β -P ₄ S ₅	As ₄ S ₅
100	77.96	103.16	46.63	57.56	241.76	259.78	288.39	317.35
200	143.38	163.64	80.37	98.00	284.46	312.88	364.83	410.88
300	173.31	185.44	107.05	124.08	322.41	357.96	429.46	482.04
400	186.96	194.61	125.52	140.71	355.90	396.10	481.42	536.81
500	194.00	199.17	138.59	152.00	385.39	428.79	523.98	580.78
600	198.05	201.75	148.19	160.09	411.55	457.25	559.74	617.34
700	200.56	203.33	155.50	166.16	434.97	482.41	590.47	648.57
800	202.23	204.38	161.25	170.88	456.12	504.92	617.37	675.80
900	203.39	205.10	165.87	174.64	475.39	525.27	641.26	699.91
1000	204.22	205.62	169.66	177.72	493.07	543.83	662.73	721.55
	P_4S_7	$As_2P_2S_7$	P_4S_7	$As_2P_2S_7$	P_4S_7	$As_2P_2S_7$	P_4S_7	$As_2P_2S_7$
100	101.69	116.47	56.46	63.23	254.42	263.35	310.88	326.59
200	176.02	187.42	99.70	110.02	307.27	322.41	406.97	432.43
300	211.76	218.61	131.84	141.69	354.16	373.54	486.00	515.14
400	229.18	233.52	154.24	162.99	395.34	417.32	549.58	580.31
500	238.53	241.48	170.25	177.97	431.57	455.39	601.82	633.36
600	244.02	246.13	182.12	188.98	463.71	488.86	645.84	677.84
700	247.48	249.07	191.23	197.37	492.50	518.65	683.73	716.01
800	249.80	251.03	198.42	203.96	518.52	545.45	716.94	749.41
900	251.41	252.40	204.22	209.27	542.24	569.79	746.46	779.06
1000	252.59	253.39	209.00	213.63	564.01	592.07	773.01	805.71

Both the quantities of u and K are useful in the interpretation of modern gas electron diffraction measurements [19].

Many characteristic values are found among the calculated mean amplitudes. For the bonded distances in particular we find firstly (in Å units at 25 °C) 0.044 for P=S in both P_4S_7 and $As_2P_2S_7$. For the P-S bond it was found 0.058 in PAs_3S_3 [4], 0.058-0.060 for P_4S_7 and $As_2P_2S_7$ (Table 8), 0.059-0.060 for P_4S_5 (Table 7), and 0.060 for P_4S_3 [2]. For the P-P bond the results are 0.060 for P_4S_7 (Table 8), 0.061 for P_4S_3 [2] and P_4S_5 (Table 7), and 0.062 for P_4S_3 [4]. Similarly one has all As-S mean amplitudes in the range of 0.059-0.061 with a somewhat lower value (0.057) for PAs_3S_3 . Finally the As-As values are found to be 0.061 for As_4S_5 and 0.057 for $As_2P_2S_7$ compared to 0.056 in PAs_3S_3 [4].

Coriolis Coefficients

In the P_4S_3 -type molecules of symmetry C_{3v} there are first-order Coriolis coefficients of the type $E \times E$ [2, 4]. Because of the lack of degeneracy of normal modes of the present molecular models, which belong to the C_{2v} symmetry, there are no such Coriolis coefficients in the present case. However, there are 163 and 269 second-order Coriolis coefficients in each of the A_4S_5 and A_4S_7 compounds, respectively. They were well all computed from the final force fields of the present work. The results which are too voluminous to be given here, are obtainable on request from S. J. Cyvin.

Thermodynamical Data

By using the vibrational frequencies (Tables 2, 3) and the mentioned molecular parameters (Table 1) of the title molecules, the molar heat capacity (C_p^0) , the reduced enthalpy $((H^0-H_0^0)/T)$, the reduced Gibbs energy $((G^0-G_0^0)/T)$ and the entropy (S^0) were calculated for an ideal gas at 1 atm and in the temperature range from 0-1000 K. The calculations were based on the usual models for a rigid rotator and harmonic oscillator [20]. The results are summarized in Tables 8 and 9.

Table 9. Comparison of the calculated frequencies for P_4S_6 with experimental data from Bues et al. [6] and the frequencies calculated for P_4S_5 and P_4S_7 .

P_4S_7	P_4S_6			P_4S_5		
a	Species	a	b	a		
672 (A ₁)	A'	_	_	_		
$662 (B_1)$		667	685	_		
$470 (B_1)$		469	505	$459 (B_1)$		
465 (A ₁)		453	_	459 (A ₁)		
448 (A ₁)		445	_	$435(A_1)$		
$416 (B_1)$		418	_	$435 (B_1)$		
360 (A ₁)		358	378	$348 (B_1)$		
$318 (B_1)$		340	370?	$346(A_1)$		
$298(A_1)$		297	285	$337(A_1)$		
263 (A ₁)		280	268	$280 (A_1)$		
236 (B ₁)		235	_	$249 (B_1)$		
$214(A_1)$		216	_	$216(A_1)$		
$200 (B_1)$		184	_	$184(A_1)$		
$173(A_1)$		175	_	_		
$142 (B_1)$		138	_	$161 (B_1)$		
$126(A_1)$		_	-	_		
477 (B ₂)	Α"	474	529	465 (A ₂)		
471 (A ₂)		462	_	$452 (B_2)$		
$446(A_2)$		431	_	405 (A ₂)		
$401 (B_2)$		389	390?	$374 (B_2)$		
304 (B ₂)		304	_	$303 (B_2)$		
$227 (B_2)$		226	_	$221 (B_2)$		
210 (A ₂)		210	_	$211(A_2)$		
188 (B ₂)		187	196	_		
$186 (A_2)$		_	_	_		
$120 (B_2)$		140	130?	143 (B ₂)		
$114 (A_2)$		116	115	$130 (A_2)$		

^a Frequencies calculated from the initial force field.

The P₄S₆ Compound

Bues et al. [6] in their studies of P_4S_5 and P_4S_7 have tentatively assigned some of the observed frequencies to the intermediate compound of P_4S_6 . We have therefore calculated approximate frequencies of this compound using the force constants of the initial force field. In Table 10 they are correlated with the corresponding calculations for P_4S_7 (Table 3) and P_4S_5 (Table 2), as well as experimental Raman frequencies from Bues et al. [6].

Acknowledgements

Financial support to BNC from The Norwegian Research Council for Science and Humanities is gratefully acknowledged.

b Experimental values taken from [6].

994

- [1] W. Bues, M. Somer, and W. Brockner, Z. Naturforsch. 35 b, 1063 (1980).
- [2] S. J. Cyvin, J. Brunvoll, M. Somer, and W. Brockner, Z. Naturforsch. **35a**, 1062 (1980).
- [3] S. J. Cyvin, B. N. Cyvin, M. Somer, and W. Brockner, Z. Naturforsch. 36a, 774 (1981).
- [4] W. Brockner, M. Somer, B. N. Cyvin, and S. J. Cyvin, Z. Naturforsch. 36a, 846 (1981).
- [5] W. Bues, M. Somer, and W. Brockner, Z. Naturforsch. 36 a, 842 (1981).
- [6] W. Bues, M. Somer, and W. Brockner, Z. anorg. allg. Chem. 476, 153 (1981).
- Wibbelmann and W. Brockner, Z. Naturforsch. 36 a, 836 (1981).
- [8] M. Somer, Dissertation TU Clausthal, 1979.
- [9] H. Motz, Diplomarbeit TU Clausthal, 1981.
 [10] R. Blachnick, A. Hoppe, U. Rabe, and U. Wickel, Z. Naturforsch. 36b, 1493 (1981).
- [11] A. M. Griffin and G. M. Sheldrick, Acta Crystallogr. 19,864 (1965).

- [12] H. J. Whitfield, J. Chem. Soc. Dalton 1973, 691.
- [13] A. Vos, R. Olthof, F. van Bolhuis, and R. Botterweg, Acta Crystallogr. 19, 846 (1965).
- [14] D. T. Dixon, F. B. Einstein, and B. R. Penthold, Acta Crystallogr. 18, 221 (1965).
- [15] M. Gardner, J. Chem. Soc. Dalton 1973, 691.
- [16] A. Müller, B. N. Cyvin, S. J. Cyvin, S. Pohl, and B. Krebs, Spectrochim. Acta 32 A, 67 (1976).
- [17] J. Brunvoll, B. N. Cyvin, and S. J. Cyvin, Z. Natur-forsch. 37 a, 342 (1982).
- [18] S. J. Cyvin, Molecular Vibrations and Mean Square Amplitudes, Universitetsforlaget, Oslo and Elsevier, Amsterdam 1968.
- [19] K. Kuchitsu and S. J. Cyvin, in: S. J. Cyvin, Molecular Structures and Vibrations, Elsevier, Amsterdam 1972,
- p. 183. [20] K. S. Pitzer, Quantum Chemistry, Prentice Hall Inc., New York 1954.